2023
Ahmed, M.
, Tanyas, H., Huser, R.
, Dahal, A., Titti, G., Borgatti, L., Francioni, M.
, & Lombardo, L. (2023).
Dynamic rainfall-induced landslide susceptibility: a step towards a unified forecasting system
. Earth ArXiv.
https://doi.org/10.31223/X5JT2D
Dahal, A.
, & Lombardo, L. (2023).
Explainable artificial intelligence in geoscience: A glimpse into the future of landslide susceptibility modeling.
Computers & geosciences
,
176, [105364].
https://doi.org/10.1016/j.cageo.2023.105364
Wang, T.
, Dahal, A., Fang, Z.
, van Westen, C., Yin, K.
, & Lombardo, L. (2023).
From space-time landslide susceptibility to landslide risk forecast
. Earth ArXiv.
https://doi.org/10.31223/X5XT1F
Elia, L., Castellaro, S.
, Dahal, A.
, & Lombardo, L. (2023).
Assessing multi-hazard susceptibility to cryospheric hazards: lesson learnt from an Alaskan example
. Earth ArXiv.
https://doi.org/10.31223/X5RQ27
Wang, N., Zhang, H.
, Dahal, A., Cheng, W., Zhao, M.
, & Lombardo, L. (2023).
On the use of explainable AI for susceptibility modeling: examining the spatial pattern of SHAP values
. Earth ArXiv.
https://doi.org/10.31223/X5P078
Mishra, B., Bhandari, R., Bhandari, K. P., Bhandari, D. M., Luintel, N.
, Dahal, A., & Poudel, S. (2023).
High-resolution mapping of seasonal crop pattern using sentinel imagery in mountainous region of Nepal: A semi-automatic approach.
Geomatics
,
3(2), 312-327.
https://doi.org/10.3390/geomatics3020017
Tanyas, H.
, He, K.
, Sadhasivam, N.
, Lombardo, L.
, Chang, L., Fang, Z.
, Dahal, A.
, Fadel, I., Hu, X., & Luo, G. (2023).
Monitoring and prediction of InSAR-derived post-seismic hillslope deformation rates
. Abstract from EGU General Assembly 2023, Vienna, Austria.
https://doi.org/10.5194/egusphere-egu23-14415
Dahal, A.
, Tanyas, H.
, van Westen, C.
, van der Meijde, M., Mai, P. M., Huser, R.
, & Lombardo, L. (2023).
Space-time modelling of co-seismic and post-seismic landslide hazard via Ensemble Neural Networks.
. Abstract from EGU General Assembly 2023, Vienna, Austria.
https://doi.org/10.5194/egusphere-egu23-3496
Dahal, A., Cruz, D. A. C.
, Tanyas, H.
, Fadel, I., Mai, P. M.
, Meijde, M. V. D.
, Westen, C. V., Huser, R.
, & Lombardo, L. (2023).
From ground motion simulations to landslide occurrence prediction
. Earth ArXiv.
https://doi.org/10.31223/X5WM0P
2022
He, K.
, Lombardo, L.
, Chang, L.
, Sadhasivam, N., Hu, X.
, Fang, Z.
, Dahal, A.
, Fadel, I., Luo, G.
, & Tanyas, H. (2022).
Hillslope recovery after a major earthquake: InSAR-derived time series analyses to capture earthquake-legacy effect
.
https://doi.org/10.31223/X5Q65W
Dahal, A.
, van den Bout, B.
, van Westen, C., & Nolde, M. (2022).
Deep Learning-Based Super-Resolution of Digital Elevation Models in Data Poor Regions.
Earth ArXiv.
https://doi.org/10.31223/X5DD21
Dahal, A.
, & Lombardo, L. (2022).
Explainable artificial intelligence in geoscience: a glimpse into the future of landslide susceptibility modeling
. Earth and Space Science Open Archive.
https://doi.org/10.1002/essoar.10512130.1
Dahal, A.
, Tanyas, H.
, van Westen, C.
, van der Meijde, M., Mai, P. M., Huser, R.
, & Lombardo, L. (2022).
Space-time landslide hazard modeling via ensemble neural networks
. Earth ArXiv.
https://doi.org/10.31223/X5B075
Dahal, A.
, van den Bout, B.
, van Westen, C. J., & Nolde, M. (2022).
Spatial Loss Function for Super-Resolution of Geoscientific Data
. Paper presented at Living Planet Symposium, LPS 2022, Bonn, North Rhine-Westphalia, Germany.
Mishra, B.
, Dahal, A., Luintel, N., Shahi, T. B., Panthi, S., Pariyar, S., & Ghimire, B. R. (2022).
Methods in the spatial deep learning: current status and future direction.
Spatial Information Research
,
30(2), 215-232.
https://doi.org/10.1007/s41324-021-00425-2
van Westen, C., Hazarika, M. K.
, Dahal, A., Kshetri, T., Shakya, A., & Nashrrullah, S. (2022).
The RiskChanges tool for multi-hazard risk-informed planning at local government level
. Abstract from EGU General Assembly 2022, Vienna, Austria.
https://doi.org/10.5194/egusphere-egu22-3026
2020
Dahal, A., Sharma, P., & Hazarika, M. K. (2020).
Implementation of integrated geospatial platform, database, and application for disaster risk management in Uttarakhand
. 1-10. Paper presented at 40th Asian Conference on Remote Sensing, ACRS 2019 , Daejeon, Korea, Republic of.
2018
Dan, T. T., Hazarika, M. K., Miyazaki, H., Nashrrullah, S., Dahal, A., & Shibasaki, R. (2018).
Estimation of population distribution using satellite imagery and GIS data
. 539-547. Paper presented at 39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018, Kuala Lumpur, Malaysia.